MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. C86300 Bronze

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
250
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
14
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 500
850
Tensile Strength: Yield (Proof), MPa 430
480

Thermal Properties

Latent Heat of Fusion, J/g 420
200
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
920
Melting Onset (Solidus), °C 1610
890
Specific Heat Capacity, J/kg-K 540
420
Thermal Conductivity, W/m-K 21
35
Thermal Expansion, µm/m-K 8.7
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
9.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
3.0
Embodied Energy, MJ/kg 840
51
Embodied Water, L/kg 520
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
100
Resilience: Unit (Modulus of Resilience), kJ/m3 880
1030
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 31
30
Strength to Weight: Bending, points 31
25
Thermal Diffusivity, mm2/s 8.6
11
Thermal Shock Resistance, points 39
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
60 to 66
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
2.5 to 5.0
Nickel (Ni), % 0 to 0.050
0 to 1.0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0 to 0.4
0 to 1.0