MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S34565 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
200
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 13
39
Fatigue Strength, MPa 260
400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 500
900
Tensile Strength: Yield (Proof), MPa 430
470

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 49
5.3
Embodied Energy, MJ/kg 840
73
Embodied Water, L/kg 520
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
300
Resilience: Unit (Modulus of Resilience), kJ/m3 880
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
32
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 8.6
3.2
Thermal Shock Resistance, points 39
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
23 to 25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
43.2 to 51.6
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.050
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0