MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S42300 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
330
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
9.1
Fatigue Strength, MPa 260
440
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 500
1100
Tensile Strength: Yield (Proof), MPa 430
850

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
750
Melting Completion (Liquidus), °C 1660
1470
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
5.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
3.2
Embodied Energy, MJ/kg 840
44
Embodied Water, L/kg 520
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
93
Resilience: Unit (Modulus of Resilience), kJ/m3 880
1840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
39
Strength to Weight: Bending, points 31
30
Thermal Diffusivity, mm2/s 8.6
6.8
Thermal Shock Resistance, points 39
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
82 to 85.1
Manganese (Mn), % 0
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 0.050
0 to 0.5
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.8 to 99.9
0
Vanadium (V), % 0
0.2 to 0.3
Residuals, % 0 to 0.4
0