MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S44725 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
22
Fatigue Strength, MPa 260
210
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 500
500
Tensile Strength: Yield (Proof), MPa 430
310

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.8

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
3.1
Embodied Energy, MJ/kg 840
44
Embodied Water, L/kg 520
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
99
Resilience: Unit (Modulus of Resilience), kJ/m3 880
240
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 31
18
Thermal Diffusivity, mm2/s 8.6
4.6
Thermal Shock Resistance, points 39
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
67.6 to 73.5
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.050
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.9
0 to 0.26
Residuals, % 0 to 0.4
0