MakeItFrom.com
Menu (ESC)

Grade VDC Steel vs. C93800 Bronze

Grade VDC steel belongs to the iron alloys classification, while C93800 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade VDC steel and the bottom bar is C93800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
96
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 80
35
Tensile Strength: Ultimate (UTS), MPa 1700
200

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
140
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 51
52
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
31
Density, g/cm3 7.8
9.1
Embodied Carbon, kg CO2/kg material 1.4
3.2
Embodied Energy, MJ/kg 19
51
Embodied Water, L/kg 47
380

Common Calculations

Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 60
6.1
Strength to Weight: Bending, points 40
8.4
Thermal Diffusivity, mm2/s 14
17
Thermal Shock Resistance, points 50
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.060
75 to 79
Iron (Fe), % 98.3 to 99.35
0 to 0.15
Lead (Pb), % 0
13 to 16
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0.15 to 0.3
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0