MakeItFrom.com
Menu (ESC)

Half-hard AISI 316 vs. Half-hard AISI 316L

Both half-hard AISI 316 and half-hard AISI 316L are iron alloys. Both are furnished in the half-hard temper. Their average alloy composition is basically identical. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is half-hard AISI 316 and the bottom bar is half-hard AISI 316L.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 360
350
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 8.0
9.0
Fatigue Strength, MPa 430
450
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 80
80
Shear Modulus, GPa 78
78
Shear Strength, MPa 690
690
Tensile Strength: Ultimate (UTS), MPa 1180
1160
Tensile Strength: Yield (Proof), MPa 850
870

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 590
870
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Calomel Potential, mV -50
-50
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.9
3.9
Embodied Energy, MJ/kg 53
53
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 26
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
95
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 41
41
Strength to Weight: Bending, points 31
31
Thermal Diffusivity, mm2/s 4.1
4.1
Thermal Shock Resistance, points 26
25

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 16 to 18
16 to 18
Iron (Fe), % 62 to 72
62 to 72
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
2.0 to 3.0
Nickel (Ni), % 10 to 14
10 to 14
Nitrogen (N), % 0 to 0.1
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030