MakeItFrom.com
Menu (ESC)

H02 C10700 Copper vs. H02 C51100 Bronze

Both H02 C10700 copper and H02 C51100 bronze are copper alloys. Both are furnished in the H02 (half hard) temper. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H02 C10700 copper and the bottom bar is H02 C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 13
26
Poisson's Ratio 0.34
0.34
Rockwell Superficial 30T Hardness 50
63
Shear Modulus, GPa 43
42
Shear Strength, MPa 170
280
Tensile Strength: Ultimate (UTS), MPa 290
430
Tensile Strength: Yield (Proof), MPa 270
360

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1080
1060
Melting Onset (Solidus), °C 1080
970
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 390
84
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
20
Electrical Conductivity: Equal Weight (Specific), % IACS 100
20

Otherwise Unclassified Properties

Base Metal Price, % relative 35
32
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 42
48
Embodied Water, L/kg 390
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
110
Resilience: Unit (Modulus of Resilience), kJ/m3 300
560
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.8
14
Strength to Weight: Bending, points 11
14
Thermal Diffusivity, mm2/s 110
25
Thermal Shock Resistance, points 10
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.83 to 99.915
93.8 to 96.5
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0.030 to 0.35
Silver (Ag), % 0.085 to 0.12
0
Tin (Sn), % 0
3.5 to 4.9
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0 to 0.050
0 to 0.5