MakeItFrom.com
Menu (ESC)

R31538 Cobalt vs. AWS E2593

R31538 cobalt belongs to the cobalt alloys classification, while AWS E2593 belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is R31538 cobalt and the bottom bar is AWS E2593.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 13 to 23
17
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 86
80
Tensile Strength: Ultimate (UTS), MPa 1020 to 1360
850

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Melting Completion (Liquidus), °C 1360
1430
Melting Onset (Solidus), °C 1290
1390
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
16
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.1
4.2
Embodied Energy, MJ/kg 110
59
Embodied Water, L/kg 530
190

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 34 to 45
30
Strength to Weight: Bending, points 27 to 32
25
Thermal Diffusivity, mm2/s 3.5
4.3
Thermal Shock Resistance, points 25 to 33
21

Alloy Composition

Carbon (C), % 0.15 to 0.35
0 to 0.040
Chromium (Cr), % 26 to 30
24 to 27
Cobalt (Co), % 58.7 to 68.9
0
Copper (Cu), % 0
1.5 to 3.0
Iron (Fe), % 0 to 0.75
52.7 to 62.5
Manganese (Mn), % 0 to 1.0
0.5 to 1.5
Molybdenum (Mo), % 5.0 to 7.0
2.9 to 3.9
Nickel (Ni), % 0 to 1.0
8.5 to 10.5
Nitrogen (N), % 0 to 0.25
0.080 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030