MakeItFrom.com
Menu (ESC)

Hot Finished AISI 316L vs. EN 1.0456 +U Steel

Both hot finished AISI 316L and EN 1.0456 +U steel are iron alloys. Both are furnished in the hot worked condition. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is hot finished AISI 316L and the bottom bar is EN 1.0456 +U steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 50
26
Fatigue Strength, MPa 230
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 410
270
Tensile Strength: Ultimate (UTS), MPa 570
420
Tensile Strength: Yield (Proof), MPa 240
300

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 870
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.5
Embodied Energy, MJ/kg 53
20
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
99
Resilience: Unit (Modulus of Resilience), kJ/m3 140
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
15
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 16 to 18
0 to 0.3
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 62 to 72
96.7 to 99.48
Manganese (Mn), % 0 to 2.0
0.5 to 1.4
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.1
Nickel (Ni), % 10 to 14
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.1
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050