MakeItFrom.com
Menu (ESC)

Hot Finished AISI 317 vs. Hot Rolled S20910 Stainless Steel

Both hot finished AISI 317 and hot rolled S20910 stainless steel are iron alloys. Both are furnished in the hot worked condition. They have a moderately high 92% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is hot finished AISI 317 and the bottom bar is hot rolled S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
240
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 55
23
Fatigue Strength, MPa 250
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
79
Shear Strength, MPa 420
500
Tensile Strength: Ultimate (UTS), MPa 580
790
Tensile Strength: Yield (Proof), MPa 250
460

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 420
460
Maximum Temperature: Mechanical, °C 590
1080
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 21
22
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
4.8
Embodied Energy, MJ/kg 59
68
Embodied Water, L/kg 160
180

Common Calculations

PREN (Pitting Resistance) 31
34
Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
150
Resilience: Unit (Modulus of Resilience), kJ/m3 150
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 4.1
3.6
Thermal Shock Resistance, points 12
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 18 to 20
20.5 to 23.5
Iron (Fe), % 58 to 68
52.1 to 62.1
Manganese (Mn), % 0 to 2.0
4.0 to 6.0
Molybdenum (Mo), % 3.0 to 4.0
1.5 to 3.0
Nickel (Ni), % 11 to 15
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0 to 0.1
0.2 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3