MakeItFrom.com
Menu (ESC)

ISO-WD32250 Magnesium vs. 6016 Aluminum

ISO-WD32250 magnesium belongs to the magnesium alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ISO-WD32250 magnesium and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
69
Elongation at Break, % 4.5 to 8.6
11 to 27
Fatigue Strength, MPa 170 to 210
68 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 180 to 190
130 to 170
Tensile Strength: Ultimate (UTS), MPa 310 to 330
200 to 280
Tensile Strength: Yield (Proof), MPa 240 to 290
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 340
410
Maximum Temperature: Mechanical, °C 120
160
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 550
610
Specific Heat Capacity, J/kg-K 980
900
Thermal Conductivity, W/m-K 130
190 to 210
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 130
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 1.8
2.7
Embodied Carbon, kg CO2/kg material 24
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 950
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 26
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 930
82 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 67
51
Strength to Weight: Axial, points 49 to 51
21 to 29
Strength to Weight: Bending, points 58 to 60
29 to 35
Thermal Diffusivity, mm2/s 72
77 to 86
Thermal Shock Resistance, points 19 to 20
9.1 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
96.4 to 98.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0
0 to 0.5
Magnesium (Mg), % 94.9 to 97.1
0.25 to 0.6
Manganese (Mn), % 0
0 to 0.2
Silicon (Si), % 0
1.0 to 1.5
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 2.5 to 4.0
0 to 0.2
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0 to 0.15