MakeItFrom.com
Menu (ESC)

ISO-WD32250 Magnesium vs. Sintered 2014 Aluminum

ISO-WD32250 magnesium belongs to the magnesium alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ISO-WD32250 magnesium and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
70
Elongation at Break, % 4.5 to 8.6
0.5 to 3.0
Fatigue Strength, MPa 170 to 210
52 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Tensile Strength: Ultimate (UTS), MPa 310 to 330
140 to 290
Tensile Strength: Yield (Proof), MPa 240 to 290
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 550
560
Specific Heat Capacity, J/kg-K 980
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
33
Electrical Conductivity: Equal Weight (Specific), % IACS 130
100

Otherwise Unclassified Properties

Base Metal Price, % relative 13
10
Density, g/cm3 1.8
2.9
Embodied Carbon, kg CO2/kg material 24
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 950
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 26
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 930
68 to 560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 67
47
Strength to Weight: Axial, points 49 to 51
13 to 27
Strength to Weight: Bending, points 58 to 60
20 to 33
Thermal Diffusivity, mm2/s 72
51
Thermal Shock Resistance, points 19 to 20
6.2 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
91.5 to 96.3
Copper (Cu), % 0
3.5 to 5.0
Magnesium (Mg), % 94.9 to 97.1
0.2 to 0.8
Silicon (Si), % 0
0 to 1.2
Zinc (Zn), % 2.5 to 4.0
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0 to 1.5