MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. EN 1.7362 Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 4.5 to 6.0
21 to 22
Fatigue Strength, MPa 150 to 190
140 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
74
Shear Strength, MPa 190 to 200
320 to 370
Tensile Strength: Ultimate (UTS), MPa 330 to 340
510 to 600
Tensile Strength: Yield (Proof), MPa 230 to 250
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 330
260
Maximum Temperature: Mechanical, °C 120
510
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
4.5
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 23
1.8
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 940
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
100 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 48 to 51
18 to 21
Strength to Weight: Bending, points 56 to 58
18 to 20
Thermal Diffusivity, mm2/s 63
11
Thermal Shock Resistance, points 19 to 20
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0
91.5 to 95.2
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0