MakeItFrom.com
Menu (ESC)

ISO-WD32260 Magnesium vs. SAE-AISI 1010 Steel

ISO-WD32260 magnesium belongs to the magnesium alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32260 magnesium and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 4.5 to 6.0
22 to 31
Fatigue Strength, MPa 150 to 190
150 to 230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 190 to 200
230 to 250
Tensile Strength: Ultimate (UTS), MPa 330 to 340
350 to 400
Tensile Strength: Yield (Proof), MPa 230 to 250
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
47
Thermal Expansion, µm/m-K 27
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
12
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.8
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 23
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 940
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 19
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 700
100 to 290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 63
24
Strength to Weight: Axial, points 48 to 51
12 to 14
Strength to Weight: Bending, points 56 to 58
14 to 15
Thermal Diffusivity, mm2/s 63
13
Thermal Shock Resistance, points 19 to 20
11 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.13
Iron (Fe), % 0
99.18 to 99.62
Magnesium (Mg), % 92.7 to 94.8
0
Manganese (Mn), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 0.8
0
Residuals, % 0 to 0.3
0