MakeItFrom.com
Menu (ESC)

ISO-WD32350 Magnesium vs. AISI 334 Stainless Steel

ISO-WD32350 magnesium belongs to the magnesium alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD32350 magnesium and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.7 to 10
34
Fatigue Strength, MPa 120 to 130
150
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 150 to 170
360
Tensile Strength: Ultimate (UTS), MPa 250 to 290
540
Tensile Strength: Yield (Proof), MPa 140 to 180
190

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Mechanical, °C 95
1000
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 990
480
Thermal Expansion, µm/m-K 25
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 23
4.1
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 960
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 23
140
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 380
96
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 68
25
Strength to Weight: Axial, points 39 to 46
19
Strength to Weight: Bending, points 50 to 55
19
Thermal Shock Resistance, points 16 to 18
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.060
55.7 to 62.7
Magnesium (Mg), % 95.7 to 97.7
0
Manganese (Mn), % 0.6 to 1.3
0 to 1.0
Nickel (Ni), % 0 to 0.0050
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 1.8 to 2.3
0
Residuals, % 0 to 0.3
0