MakeItFrom.com
Menu (ESC)

ISO-WD43150 Magnesium vs. C84000 Brass

ISO-WD43150 magnesium belongs to the magnesium alloys classification, while C84000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ISO-WD43150 magnesium and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 2.8
27
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
42
Tensile Strength: Ultimate (UTS), MPa 250
250
Tensile Strength: Yield (Proof), MPa 150
140

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 95
170
Melting Completion (Liquidus), °C 610
1040
Melting Onset (Solidus), °C 590
940
Specific Heat Capacity, J/kg-K 990
380
Thermal Conductivity, W/m-K 140
72
Thermal Expansion, µm/m-K 27
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
16
Electrical Conductivity: Equal Weight (Specific), % IACS 170
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 1.7
8.6
Embodied Carbon, kg CO2/kg material 24
3.0
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 970
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
58
Resilience: Unit (Modulus of Resilience), kJ/m3 250
83
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 71
19
Strength to Weight: Axial, points 41
8.2
Strength to Weight: Bending, points 52
10
Thermal Diffusivity, mm2/s 81
22
Thermal Shock Resistance, points 14
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
82 to 89
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 97.5 to 98.8
0
Manganese (Mn), % 1.2 to 2.0
0 to 0.010
Nickel (Ni), % 0 to 0.010
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.3
0 to 0.7