MakeItFrom.com
Menu (ESC)

Nickel 200 vs. 7129 Aluminum

Nickel 200 belongs to the nickel alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 200 and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
69
Elongation at Break, % 23 to 44
9.0 to 9.1
Fatigue Strength, MPa 120 to 350
150 to 190
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 70
26
Shear Strength, MPa 300 to 340
250 to 260
Tensile Strength: Ultimate (UTS), MPa 420 to 540
430
Tensile Strength: Yield (Proof), MPa 120 to 370
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1440
510
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 69
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
40
Electrical Conductivity: Equal Weight (Specific), % IACS 18
120

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 11
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 230
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 370
1050 to 1090
Stiffness to Weight: Axial, points 11
13
Stiffness to Weight: Bending, points 21
47
Strength to Weight: Axial, points 13 to 17
41
Strength to Weight: Bending, points 14 to 17
43 to 44
Thermal Diffusivity, mm2/s 17
58
Thermal Shock Resistance, points 13 to 16
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.4
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 99 to 100
0
Silicon (Si), % 0 to 0.35
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15