MakeItFrom.com
Menu (ESC)

Nickel 22 vs. C42600 Brass

Nickel 22 belongs to the nickel alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is nickel 22 and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 49
1.1 to 40
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
42
Shear Strength, MPa 560
280 to 470
Tensile Strength: Ultimate (UTS), MPa 790
410 to 830
Tensile Strength: Yield (Proof), MPa 360
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1390
1030
Melting Onset (Solidus), °C 1360
1010
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
110
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
26

Otherwise Unclassified Properties

Base Metal Price, % relative 70
31
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 170
48
Embodied Water, L/kg 300
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 300
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 25
13 to 27
Strength to Weight: Bending, points 21
14 to 23
Thermal Diffusivity, mm2/s 2.7
33
Thermal Shock Resistance, points 24
15 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 2.0 to 6.0
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.015
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
0.050 to 0.2
Phosphorus (P), % 0 to 0.020
0.020 to 0.050
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
2.5 to 4.0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2