MakeItFrom.com
Menu (ESC)

Nickel 22 vs. S44330 Stainless Steel

Nickel 22 belongs to the nickel alloys classification, while S44330 stainless steel belongs to the iron alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 22 and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 49
25
Fatigue Strength, MPa 330
160
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 84
78
Shear Strength, MPa 560
280
Tensile Strength: Ultimate (UTS), MPa 790
440
Tensile Strength: Yield (Proof), MPa 360
230

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 990
990
Melting Completion (Liquidus), °C 1390
1440
Melting Onset (Solidus), °C 1360
1390
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 10
21
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 70
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 12
2.8
Embodied Energy, MJ/kg 170
40
Embodied Water, L/kg 300
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
91
Resilience: Unit (Modulus of Resilience), kJ/m3 300
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 2.7
5.7
Thermal Shock Resistance, points 24
16

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.025
Chromium (Cr), % 20 to 22.5
20 to 23
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 2.0 to 6.0
72.5 to 79.7
Manganese (Mn), % 0 to 0.015
0 to 1.0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 50.8 to 63
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0 to 0.8
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0