MakeItFrom.com
Menu (ESC)

Nickel 242 vs. 7075 Aluminum

Nickel 242 belongs to the nickel alloys classification, while 7075 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 242 and the bottom bar is 7075 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 45
1.8 to 12
Fatigue Strength, MPa 300
110 to 190
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 84
26
Shear Strength, MPa 570
150 to 340
Tensile Strength: Ultimate (UTS), MPa 820
240 to 590
Tensile Strength: Yield (Proof), MPa 350
120 to 510

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 930
200
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1290
480
Specific Heat Capacity, J/kg-K 400
870
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
98

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 9.0
3.0
Embodied Carbon, kg CO2/kg material 14
8.3
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 290
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
7.8 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 280
110 to 1870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 25
22 to 54
Strength to Weight: Bending, points 21
28 to 52
Thermal Diffusivity, mm2/s 3.1
50
Thermal Shock Resistance, points 25
10 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
86.9 to 91.4
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 7.0 to 9.0
0.18 to 0.28
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
1.2 to 2.0
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 0.8
0 to 0.3
Molybdenum (Mo), % 24 to 26
0
Nickel (Ni), % 59.3 to 69
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15