MakeItFrom.com
Menu (ESC)

Nickel 242 vs. S15500 Stainless Steel

Nickel 242 belongs to the nickel alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is nickel 242 and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 45
6.8 to 16
Fatigue Strength, MPa 300
350 to 650
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 84
75
Shear Strength, MPa 570
540 to 870
Tensile Strength: Ultimate (UTS), MPa 820
890 to 1490
Tensile Strength: Yield (Proof), MPa 350
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 930
820
Melting Completion (Liquidus), °C 1380
1430
Melting Onset (Solidus), °C 1290
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 11
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 75
13
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 180
39
Embodied Water, L/kg 290
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 280
890 to 4460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 25
32 to 53
Strength to Weight: Bending, points 21
26 to 37
Thermal Diffusivity, mm2/s 3.1
4.6
Thermal Shock Resistance, points 25
30 to 50

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 7.0 to 9.0
14 to 15.5
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
2.5 to 4.5
Iron (Fe), % 0 to 2.0
71.9 to 79.9
Manganese (Mn), % 0 to 0.8
0 to 1.0
Molybdenum (Mo), % 24 to 26
0
Nickel (Ni), % 59.3 to 69
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030