MakeItFrom.com
Menu (ESC)

Nickel 333 vs. C43000 Brass

Nickel 333 belongs to the nickel alloys classification, while C43000 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 333 and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
3.0 to 55
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 85
30 to 100
Shear Modulus, GPa 81
42
Shear Strength, MPa 420
230 to 410
Tensile Strength: Ultimate (UTS), MPa 630
320 to 710
Tensile Strength: Yield (Proof), MPa 270
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.5
8.6
Embodied Carbon, kg CO2/kg material 8.5
2.8
Embodied Energy, MJ/kg 120
46
Embodied Water, L/kg 270
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
82 to 1350
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 21
10 to 23
Strength to Weight: Bending, points 19
12 to 20
Thermal Diffusivity, mm2/s 2.9
36
Thermal Shock Resistance, points 16
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 24 to 27
0
Cobalt (Co), % 2.5 to 4.0
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 9.3 to 24.5
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 44 to 48
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.7 to 2.7
Tungsten (W), % 2.5 to 4.0
0
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5