MakeItFrom.com
Menu (ESC)

Nickel 59 vs. 2017A Aluminum

Nickel 59 belongs to the nickel alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 59 and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 50
2.2 to 14
Fatigue Strength, MPa 320
92 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
27
Shear Strength, MPa 560
120 to 270
Tensile Strength: Ultimate (UTS), MPa 780
200 to 460
Tensile Strength: Yield (Proof), MPa 350
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1500
650
Melting Onset (Solidus), °C 1450
510
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
11
Density, g/cm3 8.7
3.0
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 310
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 280
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 25
19 to 42
Strength to Weight: Bending, points 22
26 to 44
Thermal Diffusivity, mm2/s 2.7
56
Thermal Shock Resistance, points 15
8.9 to 20

Alloy Composition

Aluminum (Al), % 0.1 to 0.4
91.3 to 95.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0 to 0.1
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
3.5 to 4.5
Iron (Fe), % 0 to 1.5
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 0.5
0.4 to 1.0
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.2 to 62.9
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0.2 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15