MakeItFrom.com
Menu (ESC)

Nickel 59 vs. 380.0 Aluminum

Nickel 59 belongs to the nickel alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 59 and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
74
Elongation at Break, % 50
3.0
Fatigue Strength, MPa 320
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
28
Shear Strength, MPa 560
190
Tensile Strength: Ultimate (UTS), MPa 780
320
Tensile Strength: Yield (Proof), MPa 350
160

Thermal Properties

Latent Heat of Fusion, J/g 330
510
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1500
590
Melting Onset (Solidus), °C 1450
540
Specific Heat Capacity, J/kg-K 430
870
Thermal Conductivity, W/m-K 10
100
Thermal Expansion, µm/m-K 17
22

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
2.9
Embodied Carbon, kg CO2/kg material 12
7.5
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 310
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 280
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
48
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 22
36
Thermal Diffusivity, mm2/s 2.7
40
Thermal Shock Resistance, points 15
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.1 to 0.4
79.6 to 89.5
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 22 to 24
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
3.0 to 4.0
Iron (Fe), % 0 to 1.5
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.2 to 62.9
0 to 0.5
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
7.5 to 9.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5