MakeItFrom.com
Menu (ESC)

Nickel 600 vs. ASTM Grade LC9 Steel

Nickel 600 belongs to the nickel alloys classification, while ASTM grade LC9 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is nickel 600 and the bottom bar is ASTM grade LC9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 3.4 to 35
22
Fatigue Strength, MPa 220 to 300
420
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 650 to 990
660
Tensile Strength: Yield (Proof), MPa 270 to 760
590

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 1100
430
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 55
8.0
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 9.0
2.3
Embodied Energy, MJ/kg 130
31
Embodied Water, L/kg 250
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 180
140
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1490
920
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 21 to 32
23
Strength to Weight: Bending, points 20 to 26
21
Thermal Shock Resistance, points 19 to 29
20

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.13
Chromium (Cr), % 14 to 17
0 to 0.5
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 6.0 to 10
87.4 to 91.5
Manganese (Mn), % 0 to 1.0
0 to 0.9
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 72 to 80
8.5 to 10
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.45
Sulfur (S), % 0 to 0.015
0 to 0.045
Vanadium (V), % 0
0 to 0.030