MakeItFrom.com
Menu (ESC)

Nickel 601 vs. CC753S Brass

Nickel 601 belongs to the nickel alloys classification, while CC753S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 601 and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 10 to 38
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 660 to 890
340
Tensile Strength: Yield (Proof), MPa 290 to 800
170

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1410
820
Melting Onset (Solidus), °C 1360
780
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 11
99
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 49
23
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 110
47
Embodied Water, L/kg 280
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
47
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22 to 30
12
Strength to Weight: Bending, points 20 to 25
13
Thermal Diffusivity, mm2/s 2.8
32
Thermal Shock Resistance, points 17 to 23
11

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
56.8 to 60.5
Iron (Fe), % 7.7 to 20
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 58 to 63
0.5 to 1.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.8
Zinc (Zn), % 0
33.1 to 40