MakeItFrom.com
Menu (ESC)

Nickel 601 vs. C40500 Penny Bronze

Nickel 601 belongs to the nickel alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 601 and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 10 to 38
3.0 to 49
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 440 to 530
210 to 310
Tensile Strength: Ultimate (UTS), MPa 660 to 890
270 to 540
Tensile Strength: Yield (Proof), MPa 290 to 800
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1410
1060
Melting Onset (Solidus), °C 1360
1020
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
42

Otherwise Unclassified Properties

Base Metal Price, % relative 49
30
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 110
43
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
28 to 1200
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22 to 30
8.5 to 17
Strength to Weight: Bending, points 20 to 25
10 to 17
Thermal Diffusivity, mm2/s 2.8
48
Thermal Shock Resistance, points 17 to 23
9.5 to 19

Alloy Composition

Aluminum (Al), % 1.0 to 1.7
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
94 to 96
Iron (Fe), % 7.7 to 20
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5