MakeItFrom.com
Menu (ESC)

Nickel 601 vs. C42600 Brass

Nickel 601 belongs to the nickel alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 601 and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 10 to 38
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 440 to 530
280 to 470
Tensile Strength: Ultimate (UTS), MPa 660 to 890
410 to 830
Tensile Strength: Yield (Proof), MPa 290 to 800
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1360
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
110
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
26

Otherwise Unclassified Properties

Base Metal Price, % relative 49
31
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 110
48
Embodied Water, L/kg 280
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
230 to 2970
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22 to 30
13 to 27
Strength to Weight: Bending, points 20 to 25
14 to 23
Thermal Diffusivity, mm2/s 2.8
33
Thermal Shock Resistance, points 17 to 23
15 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 1.7
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
87 to 90
Iron (Fe), % 7.7 to 20
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 58 to 63
0.050 to 0.2
Phosphorus (P), % 0
0.020 to 0.050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2