MakeItFrom.com
Menu (ESC)

Nickel 601 vs. C69300 Brass

Nickel 601 belongs to the nickel alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 601 and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 10 to 38
8.5 to 15
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 440 to 530
330 to 370
Tensile Strength: Ultimate (UTS), MPa 660 to 890
550 to 630
Tensile Strength: Yield (Proof), MPa 290 to 800
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
880
Melting Onset (Solidus), °C 1360
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 11
38
Thermal Expansion, µm/m-K 14
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 49
26
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 110
45
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 200
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 1630
400 to 700
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22 to 30
19 to 21
Strength to Weight: Bending, points 20 to 25
18 to 20
Thermal Diffusivity, mm2/s 2.8
12
Thermal Shock Resistance, points 17 to 23
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 1.7
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 21 to 25
0
Copper (Cu), % 0 to 1.0
73 to 77
Iron (Fe), % 7.7 to 20
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 58 to 63
0 to 0.1
Phosphorus (P), % 0
0.040 to 0.15
Silicon (Si), % 0 to 0.5
2.7 to 3.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5