MakeItFrom.com
Menu (ESC)

Nickel 617 vs. A384.0 Aluminum

Nickel 617 belongs to the nickel alloys classification, while A384.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 617 and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
74
Elongation at Break, % 40
2.5
Fatigue Strength, MPa 220
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
28
Shear Strength, MPa 510
200
Tensile Strength: Ultimate (UTS), MPa 740
330
Tensile Strength: Yield (Proof), MPa 280
170

Thermal Properties

Latent Heat of Fusion, J/g 330
550
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1380
610
Melting Onset (Solidus), °C 1330
510
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 13
96
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
73

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 10
7.5
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 350
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 190
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 21
38
Thermal Diffusivity, mm2/s 3.5
39
Thermal Shock Resistance, points 21
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.8 to 1.5
79.3 to 86.5
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
3.0 to 4.5
Iron (Fe), % 0 to 3.0
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0 to 0.5
Silicon (Si), % 0 to 1.0
10.5 to 12
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5