MakeItFrom.com
Menu (ESC)

Nickel 617 vs. C46500 Brass

Nickel 617 belongs to the nickel alloys classification, while C46500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 40
18 to 50
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 80
40
Shear Strength, MPa 510
280 to 380
Tensile Strength: Ultimate (UTS), MPa 740
380 to 610
Tensile Strength: Yield (Proof), MPa 280
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1380
900
Melting Onset (Solidus), °C 1330
890
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 75
23
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 190
170 to 1170
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 24
13 to 21
Strength to Weight: Bending, points 21
15 to 20
Thermal Diffusivity, mm2/s 3.5
38
Thermal Shock Resistance, points 21
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.8 to 1.5
0
Arsenic (As), % 0
0.020 to 0.060
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
59 to 62
Iron (Fe), % 0 to 3.0
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4