MakeItFrom.com
Menu (ESC)

Nickel 617 vs. C96700 Copper

Nickel 617 belongs to the nickel alloys classification, while C96700 copper belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 617 and the bottom bar is C96700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 40
10
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
53
Tensile Strength: Ultimate (UTS), MPa 740
1210
Tensile Strength: Yield (Proof), MPa 280
550

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1010
310
Melting Completion (Liquidus), °C 1380
1170
Melting Onset (Solidus), °C 1330
1110
Specific Heat Capacity, J/kg-K 450
400
Thermal Conductivity, W/m-K 13
30
Thermal Expansion, µm/m-K 12
15

Otherwise Unclassified Properties

Base Metal Price, % relative 75
90
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 10
9.5
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 350
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
99
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1080
Stiffness to Weight: Axial, points 14
8.9
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 24
38
Strength to Weight: Bending, points 21
29
Thermal Diffusivity, mm2/s 3.5
8.5
Thermal Shock Resistance, points 21
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.8 to 1.5
0
Beryllium (Be), % 0
1.1 to 1.2
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20 to 24
0
Cobalt (Co), % 10 to 15
0
Copper (Cu), % 0 to 0.5
62.4 to 68.8
Iron (Fe), % 0 to 3.0
0.4 to 1.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 44.5 to 62
29 to 33
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.35
Zirconium (Zr), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.5