MakeItFrom.com
Menu (ESC)

Nickel 625 vs. Grade 6 Titanium

Nickel 625 belongs to the nickel alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 33 to 34
11
Fatigue Strength, MPa 240 to 320
290
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
39
Shear Strength, MPa 530 to 600
530
Tensile Strength: Ultimate (UTS), MPa 790 to 910
890
Tensile Strength: Yield (Proof), MPa 320 to 450
840

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 980
310
Melting Completion (Liquidus), °C 1350
1580
Melting Onset (Solidus), °C 1290
1530
Specific Heat Capacity, J/kg-K 440
550
Thermal Conductivity, W/m-K 11
7.8
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 80
36
Density, g/cm3 8.6
4.5
Embodied Carbon, kg CO2/kg material 14
30
Embodied Energy, MJ/kg 190
480
Embodied Water, L/kg 290
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
92
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
3390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 26 to 29
55
Strength to Weight: Bending, points 22 to 24
46
Thermal Diffusivity, mm2/s 2.9
3.2
Thermal Shock Resistance, points 22 to 25
65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
4.0 to 6.0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 5.0
0 to 0.5
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.4
89.8 to 94
Residuals, % 0
0 to 0.4