MakeItFrom.com
Menu (ESC)

Nickel 625 vs. Titanium 6-6-2

Nickel 625 belongs to the nickel alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 33 to 34
6.7 to 9.0
Fatigue Strength, MPa 240 to 320
590 to 670
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
44
Shear Strength, MPa 530 to 600
670 to 800
Tensile Strength: Ultimate (UTS), MPa 790 to 910
1140 to 1370
Tensile Strength: Yield (Proof), MPa 320 to 450
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
310
Melting Completion (Liquidus), °C 1350
1610
Melting Onset (Solidus), °C 1290
1560
Specific Heat Capacity, J/kg-K 440
540
Thermal Conductivity, W/m-K 11
5.5
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 80
40
Density, g/cm3 8.6
4.8
Embodied Carbon, kg CO2/kg material 14
29
Embodied Energy, MJ/kg 190
470
Embodied Water, L/kg 290
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
89 to 99
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
34
Strength to Weight: Axial, points 26 to 29
66 to 79
Strength to Weight: Bending, points 22 to 24
50 to 57
Thermal Diffusivity, mm2/s 2.9
2.1
Thermal Shock Resistance, points 22 to 25
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
5.0 to 6.0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 5.0
0.35 to 1.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 8.0 to 10
5.0 to 6.0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.4
82.8 to 87.8
Residuals, % 0
0 to 0.4

Comparable Variants