MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C53800 Bronze

Nickel 625 belongs to the nickel alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
2.3
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
40
Shear Strength, MPa 530 to 600
470
Tensile Strength: Ultimate (UTS), MPa 790 to 910
830
Tensile Strength: Yield (Proof), MPa 320 to 450
660

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1350
980
Melting Onset (Solidus), °C 1290
800
Specific Heat Capacity, J/kg-K 440
360
Thermal Conductivity, W/m-K 11
61
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 80
37
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 14
3.9
Embodied Energy, MJ/kg 190
64
Embodied Water, L/kg 290
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
18
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
2020
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 26 to 29
26
Strength to Weight: Bending, points 22 to 24
22
Thermal Diffusivity, mm2/s 2.9
19
Thermal Shock Resistance, points 22 to 25
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
85.1 to 86.5
Iron (Fe), % 0 to 5.0
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.060
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 0.030
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
13.1 to 13.9
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2