MakeItFrom.com
Menu (ESC)

Nickel 625 vs. C67300 Bronze

Nickel 625 belongs to the nickel alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 625 and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33 to 34
12
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 79
41
Shear Strength, MPa 530 to 600
300
Tensile Strength: Ultimate (UTS), MPa 790 to 910
500
Tensile Strength: Yield (Proof), MPa 320 to 450
340

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1350
870
Melting Onset (Solidus), °C 1290
830
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
95
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
25

Otherwise Unclassified Properties

Base Metal Price, % relative 80
23
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 190
46
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 250
55
Resilience: Unit (Modulus of Resilience), kJ/m3 260 to 490
550
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 26 to 29
17
Strength to Weight: Bending, points 22 to 24
17
Thermal Diffusivity, mm2/s 2.9
30
Thermal Shock Resistance, points 22 to 25
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
0 to 0.25
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 0 to 5.0
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 0.5
2.0 to 3.5
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0 to 0.25
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0.5 to 1.5
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.4
0
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5