MakeItFrom.com
Menu (ESC)

Nickel 684 vs. 1200 Aluminum

Nickel 684 belongs to the nickel alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 684 and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
23 to 48
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 11
1.1 to 28
Fatigue Strength, MPa 390
25 to 69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 710
54 to 100
Tensile Strength: Ultimate (UTS), MPa 1190
85 to 180
Tensile Strength: Yield (Proof), MPa 800
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1370
660
Melting Onset (Solidus), °C 1320
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.0
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 10
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 360
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 1610
5.7 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 40
8.7 to 19
Strength to Weight: Bending, points 30
16 to 26
Thermal Shock Resistance, points 34
3.8 to 8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 3.3
99 to 100
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 15 to 20
0
Cobalt (Co), % 13 to 20
0
Copper (Cu), % 0 to 0.15
0 to 0.050
Iron (Fe), % 0 to 4.0
0 to 1.0
Manganese (Mn), % 0 to 0.75
0 to 0.050
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 42.7 to 64
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.5 to 3.3
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15