MakeItFrom.com
Menu (ESC)

Nickel 684 vs. 5657 Aluminum

Nickel 684 belongs to the nickel alloys classification, while 5657 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 684 and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
40 to 50
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 11
6.6 to 15
Fatigue Strength, MPa 390
74 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 710
92 to 110
Tensile Strength: Ultimate (UTS), MPa 1190
150 to 200
Tensile Strength: Yield (Proof), MPa 800
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1370
660
Melting Onset (Solidus), °C 1320
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 10
8.4
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 360
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 1610
140 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 40
15 to 20
Strength to Weight: Bending, points 30
23 to 28
Thermal Shock Resistance, points 34
6.7 to 8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 3.3
98.5 to 99.4
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 15 to 20
0
Cobalt (Co), % 13 to 20
0
Copper (Cu), % 0 to 0.15
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 4.0
0 to 0.1
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0 to 0.75
0 to 0.030
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 42.7 to 64
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.75
0 to 0.080
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.5 to 3.3
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.050