MakeItFrom.com
Menu (ESC)

Nickel 685 vs. EN AC-42200 Aluminum

Nickel 685 belongs to the nickel alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 685 and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
89 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 17
3.0 to 6.7
Fatigue Strength, MPa 470
86 to 90
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 1250
320
Tensile Strength: Yield (Proof), MPa 850
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1380
610
Melting Onset (Solidus), °C 1330
600
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 10
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 340
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 1820
410 to 490
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 42
34 to 35
Strength to Weight: Bending, points 31
40 to 41
Thermal Diffusivity, mm2/s 3.3
66
Thermal Shock Resistance, points 37
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.2 to 1.6
91 to 93.1
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 0 to 2.0
0 to 0.19
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 49.6 to 62.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 2.8 to 3.3
0 to 0.25
Zinc (Zn), % 0.020 to 0.12
0 to 0.070
Residuals, % 0
0 to 0.1