MakeItFrom.com
Menu (ESC)

Nickel 686 vs. C10300 Copper

Nickel 686 belongs to the nickel alloys classification, while C10300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is C10300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 51
2.6 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 560
160 to 240
Tensile Strength: Ultimate (UTS), MPa 780
230 to 410
Tensile Strength: Yield (Proof), MPa 350
77 to 400

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1380
1080
Melting Onset (Solidus), °C 1340
1080
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 9.8
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
99
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
99

Otherwise Unclassified Properties

Base Metal Price, % relative 70
31
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 12
2.6
Embodied Energy, MJ/kg 170
41
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
9.4 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 280
25 to 690
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 24
7.2 to 13
Strength to Weight: Bending, points 21
9.4 to 14
Thermal Diffusivity, mm2/s 2.6
110
Thermal Shock Resistance, points 21
8.2 to 15

Alloy Composition

Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0
99.95 to 99.999
Iron (Fe), % 0 to 5.0
0
Manganese (Mn), % 0 to 0.75
0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 49.5 to 63
0
Phosphorus (P), % 0 to 0.040
0.0010 to 0.0050
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0