MakeItFrom.com
Menu (ESC)

Nickel 686 vs. C33000 Brass

Nickel 686 belongs to the nickel alloys classification, while C33000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is nickel 686 and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 51
7.0 to 60
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 560
240 to 300
Tensile Strength: Ultimate (UTS), MPa 780
320 to 520
Tensile Strength: Yield (Proof), MPa 350
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1380
940
Melting Onset (Solidus), °C 1340
900
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 9.8
120
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 70
24
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 170
45
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 280
60 to 950
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 24
11 to 18
Strength to Weight: Bending, points 21
13 to 18
Thermal Diffusivity, mm2/s 2.6
37
Thermal Shock Resistance, points 21
11 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0
65 to 68
Iron (Fe), % 0 to 5.0
0 to 0.070
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 0.75
0
Molybdenum (Mo), % 15 to 17
0
Nickel (Ni), % 49.5 to 63
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.080
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.020 to 0.25
0
Tungsten (W), % 3.0 to 4.4
0
Zinc (Zn), % 0
30.8 to 34.8
Residuals, % 0
0 to 0.4