MakeItFrom.com
Menu (ESC)

Nickel 689 vs. 5182 Aluminum

Nickel 689 belongs to the nickel alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 689 and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 23
1.1 to 12
Fatigue Strength, MPa 420
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 790
170 to 240
Tensile Strength: Ultimate (UTS), MPa 1250
280 to 420
Tensile Strength: Yield (Proof), MPa 690
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
120 to 950
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 41
29 to 44
Strength to Weight: Bending, points 30
36 to 47
Thermal Shock Resistance, points 35
12 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.75 to 1.3
93.2 to 95.8
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 18 to 20
0 to 0.1
Cobalt (Co), % 9.0 to 11
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 0 to 5.0
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 0.5
0.2 to 0.5
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15