MakeItFrom.com
Menu (ESC)

Nickel 689 vs. 6005 Aluminum

Nickel 689 belongs to the nickel alloys classification, while 6005 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 689 and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 350
90 to 95
Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 23
9.5 to 17
Fatigue Strength, MPa 420
55 to 95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 790
120 to 210
Tensile Strength: Ultimate (UTS), MPa 1250
190 to 310
Tensile Strength: Yield (Proof), MPa 690
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 450
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 11
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 1170
77 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 41
20 to 32
Strength to Weight: Bending, points 30
28 to 38
Thermal Shock Resistance, points 35
8.6 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.75 to 1.3
97.5 to 99
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 18 to 20
0 to 0.1
Cobalt (Co), % 9.0 to 11
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 5.0
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 9.0 to 10.5
0
Nickel (Ni), % 48.3 to 60.9
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.5
0.6 to 0.9
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15