MakeItFrom.com
Menu (ESC)

Nickel 690 vs. 7178 Aluminum

Nickel 690 belongs to the nickel alloys classification, while 7178 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 690 and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 3.4 to 34
4.5 to 12
Fatigue Strength, MPa 180 to 300
120 to 210
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
27
Shear Strength, MPa 420 to 570
140 to 380
Tensile Strength: Ultimate (UTS), MPa 640 to 990
240 to 640
Tensile Strength: Yield (Proof), MPa 250 to 760
120 to 560

Thermal Properties

Latent Heat of Fusion, J/g 320
370
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1380
630
Melting Onset (Solidus), °C 1340
480
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
91

Otherwise Unclassified Properties

Base Metal Price, % relative 50
10
Density, g/cm3 8.3
3.1
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 170
24 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1440
110 to 2220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 21 to 33
21 to 58
Strength to Weight: Bending, points 20 to 27
28 to 54
Thermal Diffusivity, mm2/s 3.5
47
Thermal Shock Resistance, points 16 to 25
10 to 28

Alloy Composition

Aluminum (Al), % 0
85.4 to 89.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0.18 to 0.28
Copper (Cu), % 0 to 0.5
1.6 to 2.4
Iron (Fe), % 7.0 to 11
0 to 0.5
Magnesium (Mg), % 0
2.4 to 3.1
Manganese (Mn), % 0 to 0.5
0 to 0.3
Nickel (Ni), % 58 to 66
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
6.3 to 7.3
Residuals, % 0
0 to 0.15

Comparable Variants