MakeItFrom.com
Menu (ESC)

Nickel 693 vs. 705.0 Aluminum

Nickel 693 belongs to the nickel alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
8.4 to 10
Fatigue Strength, MPa 230
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 660
240 to 260
Tensile Strength: Yield (Proof), MPa 310
130

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1310
610
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 9.1
140
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 9.9
8.4
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 250
120 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 23
24 to 26
Strength to Weight: Bending, points 21
31 to 32
Thermal Diffusivity, mm2/s 2.3
55
Thermal Shock Resistance, points 19
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
92.3 to 98.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0 to 0.4
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 2.5 to 6.0
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.6
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15