MakeItFrom.com
Menu (ESC)

Nickel 693 vs. 771.0 Aluminum

Nickel 693 belongs to the nickel alloys classification, while 771.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
1.7 to 6.5
Fatigue Strength, MPa 230
92 to 180
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 660
250 to 370
Tensile Strength: Yield (Proof), MPa 310
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1310
620
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 9.1
140 to 150
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 9.9
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 250
310 to 900
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 23
23 to 35
Strength to Weight: Bending, points 21
29 to 39
Thermal Diffusivity, mm2/s 2.3
54 to 58
Thermal Shock Resistance, points 19
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
90.5 to 92.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0.060 to 0.2
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 2.5 to 6.0
0 to 0.15
Magnesium (Mg), % 0
0.8 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 1.0
0.1 to 0.2
Zinc (Zn), % 0
6.5 to 7.5
Residuals, % 0
0 to 0.15