MakeItFrom.com
Menu (ESC)

Nickel 693 vs. A206.0 Aluminum

Nickel 693 belongs to the nickel alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is nickel 693 and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
4.2 to 10
Fatigue Strength, MPa 230
90 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
260
Tensile Strength: Ultimate (UTS), MPa 660
390 to 440
Tensile Strength: Yield (Proof), MPa 310
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1350
670
Melting Onset (Solidus), °C 1310
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 9.1
130
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 9.9
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 250
440 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 23
36 to 41
Strength to Weight: Bending, points 21
39 to 43
Thermal Diffusivity, mm2/s 2.3
48
Thermal Shock Resistance, points 19
17 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
93.9 to 95.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
4.2 to 5.0
Iron (Fe), % 2.5 to 6.0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 53.3 to 67.5
0 to 0.050
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 1.0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15