MakeItFrom.com
Menu (ESC)

Nickel 693 vs. ASTM A387 Grade 12 Steel

Nickel 693 belongs to the nickel alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
25
Fatigue Strength, MPa 230
190 to 230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 440
300 to 330
Tensile Strength: Ultimate (UTS), MPa 660
470 to 520
Tensile Strength: Yield (Proof), MPa 310
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 1010
430
Melting Completion (Liquidus), °C 1350
1470
Melting Onset (Solidus), °C 1310
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 9.1
44
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
2.8
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 9.9
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180 to 250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
16 to 18
Strength to Weight: Bending, points 21
17 to 18
Thermal Diffusivity, mm2/s 2.3
12
Thermal Shock Resistance, points 19
14 to 15

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0.050 to 0.17
Chromium (Cr), % 27 to 31
0.8 to 1.2
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
97 to 98.2
Manganese (Mn), % 0 to 1.0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0.15 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 1.0
0