MakeItFrom.com
Menu (ESC)

Nickel 693 vs. EN 2.4608 Nickel

Both nickel 693 and EN 2.4608 nickel are nickel alloys. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
34
Fatigue Strength, MPa 230
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 440
410
Tensile Strength: Ultimate (UTS), MPa 660
620
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 330
330
Maximum Temperature: Mechanical, °C 1010
1000
Melting Completion (Liquidus), °C 1350
1460
Melting Onset (Solidus), °C 1310
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 9.1
11
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 60
55
Density, g/cm3 8.1
8.5
Embodied Carbon, kg CO2/kg material 9.9
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
170
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 2.3
2.9
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0.030 to 0.080
Chromium (Cr), % 27 to 31
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 2.5 to 6.0
11.4 to 23.8
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 53.3 to 67.5
44 to 47
Niobium (Nb), % 0.5 to 2.5
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0.7 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 0
2.5 to 4.0