MakeItFrom.com
Menu (ESC)

Nickel 693 vs. C40500 Penny Bronze

Nickel 693 belongs to the nickel alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is nickel 693 and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
3.0 to 49
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 440
210 to 310
Tensile Strength: Ultimate (UTS), MPa 660
270 to 540
Tensile Strength: Yield (Proof), MPa 310
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1350
1060
Melting Onset (Solidus), °C 1310
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 9.1
160
Thermal Expansion, µm/m-K 13
18

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 9.9
2.7
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
28 to 1200
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
8.5 to 17
Strength to Weight: Bending, points 21
10 to 17
Thermal Diffusivity, mm2/s 2.3
48
Thermal Shock Resistance, points 19
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 2.5 to 4.0
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
94 to 96
Iron (Fe), % 2.5 to 6.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 53.3 to 67.5
0
Niobium (Nb), % 0.5 to 2.5
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 1.0
0
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5